Facebook Twitter YouTube SoundCloud RSS
 

Triso: Nuclear ‘Power Balls’ That Could Eliminate Reactor Meltdowns

Is nuclear power really a safe alternative to hydrocarbons? Is it worth the risk of devastating meltdowns like we saw in Chernobyl, or Fukushima?

The fact remains that there are inherent risks involved with all major energy sources, and nuclear power certainly has its drawbacks – from reactor safety, to nuclear waste, to the various  stages of fuel processing. However, because of its potential to meet base-load requirements to power modern cities, is has always been entertained as one of the leading options for power generation going forward.

While there have been other promising non-uranium technologies available like Thorium nuclear reactors (both India and China are developing these for future use), still much of industry is stuck on a narrow path of technology and adoption. The limited options have a lot to do with the global cartel that governs this industry and whose crucial component is not necessarily the energy being produced by reactors – but the weapons grade plutonium which comes out the other end. This is a central mechanism for global power-sharing agreements in the current world order.

There is a new fuel production method emerging called “Triso” which promises to deliver all the benefits of a nuclear reactor but without the risk of meltdowns. Will it gain mass adoption?


(Image Source: Breaking Defense)

WIRED reports….

The basic idea behind all nuclear power plants is the same: Convert the heat created by nuclear fission into electricity. There are several ways to do this, but in each case it involves a delicate balancing act between safety and efficiency. A nuclear reactor works best when the core is really hot, but if it gets too hot it will cause a meltdown and the environment will get poisoned and people may die and it will take billions of dollars to clean up the mess.

The last time this happened was less than a decade ago, when a massive earthquake followed by a series of tsunamis caused a meltdown at the Fukushima Daiichi power plant in Japan. But a new generation of reactors coming online in the next few years aims to make these kinds of disasters a thing of the past. Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.

Triso— short for “tristructural isotropic”—fuel is made from a mixture of low enriched uranium and oxygen, and it is surrounded by three alternating layers of graphite and a ceramic called silicon carbide. Each particle is smaller than a poppy seed, but its layered shell can protect the uranium inside from melting under even the most extreme conditions that could occur in a reactor.

Paul Demkowicz is the director of the Advanced Gas Reactor Field Development and Qualification Program at Idaho National Laboratory, and a large part of his job is simulating worst-case scenarios for next-generation nuclear reactors. For the past few years, Demkowicz and his colleagues have been running qualification tests on triso fuel that involve putting them in a reactor and cranking the temperature. Most nuclear reactors today operate well below 1,000 degrees Fahrenheit, and even the next generation high-temperature reactors will top out at about 2,000 degrees. But during the INL tests, Demkowicz demonstrated that triso could withstand reactor temperatures over 3,200 degrees Fahrenheit. Out of 300,000 particles, not a single triso coating failed during the two-week long test.

“In the new reactor designs, it’s basically impossible to exceed these temperatures, because the reactor kind of shuts down as it reaches these high temperatures,” says Demkowicz. “So if you take these reactor designs and combine them with a fuel that can handle the heat, you essentially have an accident-proof reactor.”

In a conventional nuclear reactor, the main line of defense against a meltdown is the fuel control rod, which power plant operators use to control the fission rate in the core. If things get too hot, they push more rods into the core so the fission rate—and temperature—goes down. Every operating nuclear reactor in the world is also ensconced in a massive containment structure designed to prevent radioactive material from escaping if something goes wrong.

But with triso fuel, these safety features are redundant, since each particle is effectively wrapped in a control rod. This opens the door for small reactor designs that wouldn’t have been possible before. “Now you don’t have to go build this large containment vessel that costs hundreds of millions of dollars for a reactor, because the fuel carries its own containment,” says Joel Duling, the president of the Nuclear Operations Group at BWXT, a company that makes triso fuel and nuclear reactors. “So you can have a reactor that fits in a cargo container and still has all the safety features of a traditional commercial reactor.”

Triso fuel has been around since the 1960s, but it was expensive to manufacture and didn’t have enough energy density to meet the needs of the giant light-water reactors found in most of the world’s nuclear power plants. Yet once the Department of Energy started throwing its support behind companies developing small high-temperature reactors in 2015 with the launch of the Gateway for Accelerated Innovation in Nuclear program, it looked like triso fuel’s time had come. There was just one problem: No one was producing it.

America’s nuclear fuel production capacity has been in freefall since the mid-1980s, spurred by declines in uranium price and demand. But in 2003, BWXT partnered with the Department of Energy to make triso fuel for testing and demonstrated that it could produce the fuel at scale should the demand arise. At the time, President George W. Bush was promoting an imminent “nuclear renaissance” in the United States, but the announcement turned out to be premature. The renaissance didn’t start to materialize for another 15 years, after hundreds of millions in federal funding was injected into a wave of nuclear startups. And it wasn’t until last October that BWXT announced that it was restarting its triso production line to supply fuel to the next generation of high-temperature nuclear reactors that will come online in the next few years.

“We see a large demand from a wave of new reactors in the not-too-distant future,” says Duling. “By the late ’20s and early ’30s, triso will take over as the dominant fuel type.”

Continue this story at Wired

READ MORE NUCLEAR NEWS AT: 21st Century Wire Nuclear Files

SUPPORT OUR INDEPENDENT MEDIA PLATFORM – BECOME A MEMBER @21WIRE.TV